Model Gallery

36 models from 1 repositories

Filter by type:

Filter by tags:

moondream2-20250414
Moondream is a small vision language model designed to run efficiently everywhere.

Repository: localaiLicense: apache-2.0

smolvlm-256m-instruct
SmolVLM-256M is the smallest multimodal model in the world. It accepts arbitrary sequences of image and text inputs to produce text outputs. It's designed for efficiency. SmolVLM can answer questions about images, describe visual content, or transcribe text. Its lightweight architecture makes it suitable for on-device applications while maintaining strong performance on multimodal tasks. It can run inference on one image with under 1GB of GPU RAM.

Repository: localaiLicense: apache-2.0

smolvlm-500m-instruct
SmolVLM-500M is a tiny multimodal model, member of the SmolVLM family. It accepts arbitrary sequences of image and text inputs to produce text outputs. It's designed for efficiency. SmolVLM can answer questions about images, describe visual content, or transcribe text. Its lightweight architecture makes it suitable for on-device applications while maintaining strong performance on multimodal tasks. It can run inference on one image with 1.23GB of GPU RAM.

Repository: localaiLicense: apache-2.0

smolvlm-instruct
SmolVLM is a compact open multimodal model that accepts arbitrary sequences of image and text inputs to produce text outputs. Designed for efficiency, SmolVLM can answer questions about images, describe visual content, create stories grounded on multiple images, or function as a pure language model without visual inputs. Its lightweight architecture makes it suitable for on-device applications while maintaining strong performance on multimodal tasks.

Repository: localaiLicense: apache-2.0

smolvlm2-2.2b-instruct
SmolVLM2-2.2B is a lightweight multimodal model designed to analyze video content. The model processes videos, images, and text inputs to generate text outputs - whether answering questions about media files, comparing visual content, or transcribing text from images. Despite its compact size, requiring only 5.2GB of GPU RAM for video inference, it delivers robust performance on complex multimodal tasks. This efficiency makes it particularly well-suited for on-device applications where computational resources may be limited.

Repository: localaiLicense: apache-2.0

smolvlm2-500m-video-instruct
SmolVLM2-500M-Video is a lightweight multimodal model designed to analyze video content. The model processes videos, images, and text inputs to generate text outputs - whether answering questions about media files, comparing visual content, or transcribing text from images. Despite its compact size, requiring only 1.8GB of GPU RAM for video inference, it delivers robust performance on complex multimodal tasks. This efficiency makes it particularly well-suited for on-device applications where computational resources may be limited.

Repository: localaiLicense: apache-2.0

smolvlm2-256m-video-instruct
SmolVLM2-256M-Video is a lightweight multimodal model designed to analyze video content. The model processes videos, images, and text inputs to generate text outputs - whether answering questions about media files, comparing visual content, or transcribing text from images. Despite its compact size, requiring only 1.38GB of GPU RAM for video inference. This efficiency makes it particularly well-suited for on-device applications that require specific domain fine-tuning and computational resources may be limited.

Repository: localaiLicense: apache-2.0

gemma-3-27b-it
Google/gemma-3-27b-it is an open-source, state-of-the-art vision-language model built from the same research and technology used to create the Gemini models. It is multimodal, handling text and image input and generating text output, with open weights for both pre-trained variants and instruction-tuned variants. Gemma 3 models have a large, 128K context window, multilingual support in over 140 languages, and are available in more sizes than previous versions. They are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as laptops, desktops or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone.

Repository: localaiLicense: gemma

gemma-3-12b-it
google/gemma-3-12b-it is an open-source, state-of-the-art, lightweight, multimodal model built from the same research and technology used to create the Gemini models. It is capable of handling text and image input and generating text output. It has a large context window of 128K tokens and supports over 140 languages. The 12B variant has been fine-tuned using the instruction-tuning approach. Gemma 3 models are suitable for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Their relatively small size makes them deployable in environments with limited resources such as laptops, desktops, or your own cloud infrastructure.

Repository: localaiLicense: gemma

gemma-3-4b-it
Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. Gemma 3 models are multimodal, handling text and image input and generating text output, with open weights for both pre-trained variants and instruction-tuned variants. Gemma 3 has a large, 128K context window, multilingual support in over 140 languages, and is available in more sizes than previous versions. Gemma 3 models are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as laptops, desktops or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. Gemma-3-4b-it is a 4 billion parameter model.

Repository: localaiLicense: gemma

gemma-3-1b-it
google/gemma-3-1b-it is a large language model with 1 billion parameters. It is part of the Gemma family of open, state-of-the-art models from Google, built from the same research and technology used to create the Gemini models. Gemma 3 models are multimodal, handling text and image input and generating text output, with open weights for both pre-trained variants and instruction-tuned variants. These models have multilingual support in over 140 languages, and are available in more sizes than previous versions. They are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as laptops, desktops or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone.

Repository: localaiLicense: gemma

tesslate_synthia-s1-27b
Synthia-S1-27b is a reasoning, AI model developed by Tesslate AI, fine-tuned specifically for advanced reasoning, coding, and RP usecases. Built upon the robust Gemma3 architecture, Synthia-S1-27b excels in logical reasoning, creative writing, and deep contextual understanding. It supports multimodal inputs (text and images) with a large 128K token context window, enabling complex analysis suitable for research, academic tasks, and enterprise-grade AI applications.

Repository: localaiLicense: gemma

medgemma-4b-it
MedGemma is a collection of Gemma 3 variants that are trained for performance on medical text and image comprehension. Developers can use MedGemma to accelerate building healthcare-based AI applications. MedGemma currently comes in two variants: a 4B multimodal version and a 27B text-only version. MedGemma 4B utilizes a SigLIP image encoder that has been specifically pre-trained on a variety of de-identified medical data, including chest X-rays, dermatology images, ophthalmology images, and histopathology slides. Its LLM component is trained on a diverse set of medical data, including radiology images, histopathology patches, ophthalmology images, and dermatology images. MedGemma 4B is available in both pre-trained (suffix: -pt) and instruction-tuned (suffix -it) versions. The instruction-tuned version is a better starting point for most applications. The pre-trained version is available for those who want to experiment more deeply with the models. MedGemma 27B has been trained exclusively on medical text and optimized for inference-time computation. MedGemma 27B is only available as an instruction-tuned model. MedGemma variants have been evaluated on a range of clinically relevant benchmarks to illustrate their baseline performance. These include both open benchmark datasets and curated datasets. Developers can fine-tune MedGemma variants for improved performance. Consult the Intended Use section below for more details.

Repository: localaiLicense: gemma

medgemma-27b-text-it
MedGemma is a collection of Gemma 3 variants that are trained for performance on medical text and image comprehension. Developers can use MedGemma to accelerate building healthcare-based AI applications. MedGemma currently comes in two variants: a 4B multimodal version and a 27B text-only version. MedGemma 4B utilizes a SigLIP image encoder that has been specifically pre-trained on a variety of de-identified medical data, including chest X-rays, dermatology images, ophthalmology images, and histopathology slides. Its LLM component is trained on a diverse set of medical data, including radiology images, histopathology patches, ophthalmology images, and dermatology images. MedGemma 4B is available in both pre-trained (suffix: -pt) and instruction-tuned (suffix -it) versions. The instruction-tuned version is a better starting point for most applications. The pre-trained version is available for those who want to experiment more deeply with the models. MedGemma 27B has been trained exclusively on medical text and optimized for inference-time computation. MedGemma 27B is only available as an instruction-tuned model. MedGemma variants have been evaluated on a range of clinically relevant benchmarks to illustrate their baseline performance. These include both open benchmark datasets and curated datasets. Developers can fine-tune MedGemma variants for improved performance. Consult the Intended Use section below for more details.

Repository: localaiLicense: gemma

meta-llama_llama-4-scout-17b-16e-instruct
The Llama 4 collection of models are natively multimodal AI models that enable text and multimodal experiences. These models leverage a mixture-of-experts architecture to offer industry-leading performance in text and image understanding. These Llama 4 models mark the beginning of a new era for the Llama ecosystem. We are launching two efficient models in the Llama 4 series, Llama 4 Scout, a 17 billion parameter model with 16 experts, and Llama 4 Maverick, a 17 billion parameter model with 128 experts.

Repository: localaiLicense: llama4

ultravox-v0_5-llama-3_2-1b
Ultravox is a multimodal Speech LLM built around a pretrained Llama3.2-1B-Instruct and whisper-large-v3-turbo backbone.

Repository: localaiLicense: llama3.2

qwen2.5-omni-7b
Qwen2.5-Omni is an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. Modalities: - ✅ Text input - ✅ Audio input - ✅ Image input - ❌ Video input - ❌ Audio generation

Repository: localaiLicense: apache-2.0

qwen2.5-omni-3b
Qwen2.5-Omni is an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. Modalities: - ✅ Text input - ✅ Audio input - ✅ Image input - ❌ Video input - ❌ Audio generation

Repository: localaiLicense: apache-2.0

ultravox-v0_5-llama-3_1-8b
Ultravox is a multimodal Speech LLM built around a pretrained Llama3.1-8B-Instruct and whisper-large-v3-turbo backbone. See https://ultravox.ai for the GitHub repo and more information. Ultravox is a multimodal model that can consume both speech and text as input (e.g., a text system prompt and voice user message). The input to the model is given as a text prompt with a special <|audio|> pseudo-token, and the model processor will replace this magic token with embeddings derived from the input audio. Using the merged embeddings as input, the model will then generate output text as usual. In a future revision of Ultravox, we plan to expand the token vocabulary to support generation of semantic and acoustic audio tokens, which can then be fed to a vocoder to produce voice output. No preference tuning has been applied to this revision of the model.

Repository: localaiLicense: llama3.1

minicpm-o-2_6
MiniCPM-o 2.6 is the latest and most capable model in the MiniCPM-o series. The model is built in an end-to-end fashion based on SigLip-400M, Whisper-medium-300M, ChatTTS-200M, and Qwen2.5-7B with a total of 8B parameters

Repository: localaiLicense: apache-2.0

minicpm-v-2_6
MiniCPM-V 2.6 is the latest and most capable model in the MiniCPM-V series. The model is built on SigLip-400M and Qwen2-7B with a total of 8B parameters

Repository: localaiLicense: apache-2.0

Page 1