qwen3-30b-a3b
Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features:
Uniquely support of seamless switching between thinking mode (for complex logical reasoning, math, and coding) and non-thinking mode (for efficient, general-purpose dialogue) within single model, ensuring optimal performance across various scenarios.
Significantly enhancement in its reasoning capabilities, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning.
Superior human preference alignment, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience.
Expertise in agent capabilities, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks.
Support of 100+ languages and dialects with strong capabilities for multilingual instruction following and translation.
Qwen3-30B-A3B has the following features:
Type: Causal Language Models
Training Stage: Pretraining & Post-training
Number of Parameters: 30.5B in total and 3.3B activated
Number of Paramaters (Non-Embedding): 29.9B
Number of Layers: 48
Number of Attention Heads (GQA): 32 for Q and 4 for KV
Number of Experts: 128
Number of Activated Experts: 8
Context Length: 32,768 natively and 131,072 tokens with YaRN.
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our blog, GitHub, and Documentation.