Model Gallery

9 models from 1 repositories

Filter by type:

Filter by tags:

moondream2-20250414
Moondream is a small vision language model designed to run efficiently everywhere.

Repository: localaiLicense: apache-2.0

smolvlm-256m-instruct
SmolVLM-256M is the smallest multimodal model in the world. It accepts arbitrary sequences of image and text inputs to produce text outputs. It's designed for efficiency. SmolVLM can answer questions about images, describe visual content, or transcribe text. Its lightweight architecture makes it suitable for on-device applications while maintaining strong performance on multimodal tasks. It can run inference on one image with under 1GB of GPU RAM.

Repository: localaiLicense: apache-2.0

smolvlm-500m-instruct
SmolVLM-500M is a tiny multimodal model, member of the SmolVLM family. It accepts arbitrary sequences of image and text inputs to produce text outputs. It's designed for efficiency. SmolVLM can answer questions about images, describe visual content, or transcribe text. Its lightweight architecture makes it suitable for on-device applications while maintaining strong performance on multimodal tasks. It can run inference on one image with 1.23GB of GPU RAM.

Repository: localaiLicense: apache-2.0

smolvlm-instruct
SmolVLM is a compact open multimodal model that accepts arbitrary sequences of image and text inputs to produce text outputs. Designed for efficiency, SmolVLM can answer questions about images, describe visual content, create stories grounded on multiple images, or function as a pure language model without visual inputs. Its lightweight architecture makes it suitable for on-device applications while maintaining strong performance on multimodal tasks.

Repository: localaiLicense: apache-2.0

smolvlm2-2.2b-instruct
SmolVLM2-2.2B is a lightweight multimodal model designed to analyze video content. The model processes videos, images, and text inputs to generate text outputs - whether answering questions about media files, comparing visual content, or transcribing text from images. Despite its compact size, requiring only 5.2GB of GPU RAM for video inference, it delivers robust performance on complex multimodal tasks. This efficiency makes it particularly well-suited for on-device applications where computational resources may be limited.

Repository: localaiLicense: apache-2.0

smolvlm2-500m-video-instruct
SmolVLM2-500M-Video is a lightweight multimodal model designed to analyze video content. The model processes videos, images, and text inputs to generate text outputs - whether answering questions about media files, comparing visual content, or transcribing text from images. Despite its compact size, requiring only 1.8GB of GPU RAM for video inference, it delivers robust performance on complex multimodal tasks. This efficiency makes it particularly well-suited for on-device applications where computational resources may be limited.

Repository: localaiLicense: apache-2.0

smolvlm2-256m-video-instruct
SmolVLM2-256M-Video is a lightweight multimodal model designed to analyze video content. The model processes videos, images, and text inputs to generate text outputs - whether answering questions about media files, comparing visual content, or transcribing text from images. Despite its compact size, requiring only 1.38GB of GPU RAM for video inference. This efficiency makes it particularly well-suited for on-device applications that require specific domain fine-tuning and computational resources may be limited.

Repository: localaiLicense: apache-2.0

qwen2.5-omni-7b
Qwen2.5-Omni is an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. Modalities: - ✅ Text input - ✅ Audio input - ✅ Image input - ❌ Video input - ❌ Audio generation

Repository: localaiLicense: apache-2.0

qwen2.5-omni-3b
Qwen2.5-Omni is an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. Modalities: - ✅ Text input - ✅ Audio input - ✅ Image input - ❌ Video input - ❌ Audio generation

Repository: localaiLicense: apache-2.0